Topological quantum numbers in condensed matter systems

Schedule

Literature

[1] A. Altland and B. Simons, Condensed Matter Field Theory (Oxford University Press, 2010), second edition ed.
[2] J. E. Avron and R. Seiler, Quantization of the Hall Conductance for General, Multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett. 54, 259 (1985).
[3] G. V. Dunne, Aspects of Chern-Simons Theory, in [12], chap. 3, p. 177.
[4] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004).
[5] S. M. Girvin, The Quantum Hall Effect: Novel Excitations and Broken Symmetries, in [12], chap. 2, p. 53.
[6] B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25, 2185 (1982).
[7] T. Ihn, Semiconductor Nanostructures (Oxford University Press, 2011).
[8] M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys. (NY) 160, 343 (1985).
[9] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981).
[10] D. J. Thouless, M. Kohmoto, M. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).
[11] X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, 2004).
[12] A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, eds., Topological aspects of low dimensional systems (Springer-Verlag, Berlin, 1999).
[13] A. Kitaev, Lecture notes on: Topological Quantum Systems external page URL
[14] B. A. Bernevig, Topological insulators and topological superconductors (Princeton University Press 2013)
[15] E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press 2013)

JavaScript has been disabled in your browser